Teknologi pertanian masa depan dan peranannya dalam menunjang ketahanan pangan

Keywords: kecerdasan buatan, ketahanan pangan, IoT, plant factory, teknologi pertanian, urban farming

Abstract

Berbagai permasalahan global di masa mendatang sangat erat kaitannya dengan pertanian, lingkungan, masyarakat dan sumber daya seiring meningkatnya populasi manusia di dunia dan perubahan iklim. Isu-isu tentang pertanian atau pangan meliputi berkurangnya jumlah para petani akibat penuaan dan meningkatnya populasi perkotaan serta hilangnya lahan pertanian karena urbanisasi, penggurunan, akumulasi garam di permukaan tanah, dan kontaminasi tanah dengan zat beracun. Teknologi pertanian di masa mendatang harus dapat membantu meningkatkan pangan secara simultan. Beberapa teknologi dan inovasi yang diprediksi dapat menjadi solusi antara lain pertanian di perkotaan (urban farming), pertanian secara vertical (vertikultur) serta plant factory (perusahaan tanaman terintegrasi), serta alat mesin yang didukung dengan teknologi mutakhir (artificial intelligent), internet of things (IoT) dan pertanian presisi agar dapat menurunkan kebutuhan terhadap sumber daya manusia yang saat ini minat anak muda pada bidang pertanian semakin menurun. Ulasan pada karya tulis ini bertujuan untuk memberikan informasi terkait peranan teknologi pertanian di masa yang akan datang berdasarkan teknologi yang saat ini sedang dikembangkan serta memberi gambaran mengenai aplikasinya di masa yang akan datang khususnya ketahanan pangan. Teknologi tersebut yang harapannya dapat menunjang kebutuhan pekerjaan-pekerjaan di bidang pertanian yang semakin kompleks dengan memanfaatkan sumberdaya se-efisien mungkin dan hasil produksi yang maksimal sehingga dapat menjaga stabilitas ketahanan pangan di masa yang akan datang.

References

T. Kozai, G. Niu, and M. Takagaki, Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Academic Press, 2016.

A. Roshanianfard, N. Noguchi, H. Okamoto, and K. Ishii, "A review of autonomous agricultural vehicles (The experience of Hokkaido University)," Journal of Terramechanics, vol. 91, pp. 155-183, 2020.

T. Kozai, "Plant factory in Japan-current situation and perspectives," Chron. Hortic, vol. 53, no. 2, pp. 8-11, 2013.

M. A. Umar, "Bonus demografi sebagai peluang dan tantangan pengelolaan sumber daya alam di era otonomi daerah," Genta Mulia: Jurnal Ilmiah Pendidikan, vol. 8, no. 2, 2017.

N. Alexandratos and J. Bruinsma, "World agriculture towards 2030/2050: the 2012 revision," 2012.

H. Kurita, M. Iida, M. Suguri, and R. Masuda, "Application of image processing technology for unloading automation of robotic head-feeding combine harvester," Engineering in Agriculture, Environment and Food, vol. 5, no. 4, pp. 146-151, 2012.

S. F. Ardabili, A. Mahmoudi, T. M. Gundoshmian, and A. Roshanianfard, "Modeling and comparison of fuzzy and on/off controller in a mushroom growing hall," Measurement, vol. 90, pp. 127-134, 2016.

P. Thanpattranon, T. Ahamed, and T. Takigawa, "Navigation of autonomous tractor for orchards and plantations using a laser range finder: Automatic control of trailer position with tractor," Biosystems Engineering, vol. 147, pp. 90-103, 2016.

E. J. Van Henten, D. A. Van’t Slot, C. W. J. Hol, and L. G. Van Willigenburg, "Optimal manipulator design for a cucumber harvesting robot," Computers and electronics in agriculture, vol. 65, no. 2, pp. 247-257, 2009.

T. Bakker, K. van Asselt, J. Bontsema, J. Müller, and G. van Straten, "Autonomous navigation using a robot platform in a sugar beet field," Biosystems Engineering, vol. 109, no. 4, pp. 357-368, 2011.

F. Dong, W. Heinemann, and R. Kasper, "Development of a row guidance system for an autonomous robot for white asparagus harvesting," Computers and Electronics in Agriculture, vol. 79, no. 2, pp. 216-225, 2011.

M. Saito, K. Tamaki, K. Nishiwaki, Y. Nagasaka, and K. Motobayashi, "Development of robot combine harvester for beans using CAN bus network," IFAC Proceedings Volumes, vol. 46, no. 18, pp. 148-153, 2013.

Y. Kohno et al., "Development of a mobile grading machine for citrus fruit," Engineering in agriculture, Environment and Food, vol. 4, no. 1, pp. 7-11, 2011.

K. Tamaki, Y. Nagasaka, K. Nishiwaki, M. Saito, Y. Kikuchi, and K. Motobayashi, "A robot system for paddy field farming in Japan," IFAC Proceedings Volumes, vol. 46, no. 18, pp. 143-147, 2013.

D. Eizicovits, B. van Tuijl, S. Berman, and Y. Edan, "Integration of perception capabilities in gripper design using graspability maps," Biosystems Engineering, vol. 146, pp. 98-113, 2016.

B. Zion, M. Mann, D. Levin, A. Shilo, D. Rubinstein, and I. Shmulevich, "Harvest-order planning for a multiarm robotic harvester," Computers and Electronics in Agriculture, vol. 103, pp. 75-81, 2014.

S. Hayashi et al., "Evaluation of a strawberry-harvesting robot in a field test," Biosystems engineering, vol. 105, no. 2, pp. 160-171, 2010.

Z. De-An, L. Jidong, J. Wei, Z. Ying, and C. Yu, "Design and control of an apple harvesting robot," Biosystems engineering, vol. 110, no. 2, pp. 112-122, 2011.

H. G. Tanner, K. J. Kyriakopoulos, and N. I. Krikelis, "Advanced agricultural robots: kinematics and dynamics of multiple mobile manipulators handling non-rigid material," Computers and electronics in agriculture, vol. 31, no. 1, pp. 91-105, 2001.

S. Toyama and G. Yamamoto, "Development of Wearable-Agri-Robot∼ mechanism for agricultural work∼," 2009: IEEE, pp. 5801-5806.

A. Pettersson, T. Ohlsson, S. Davis, J. O. Gray, and T. J. Dodd, "A hygienically designed force gripper for flexible handling of variable and easily damaged natural food products," Innovative Food Science & Emerging Technologies, vol. 12, no. 3, pp. 344-351, 2011.

C. Blanes, M. Mellado, and P. Beltrán, "Tactile sensing with accelerometers in prehensile grippers for robots," Mechatronics, vol. 33, pp. 1-12, 2016.

Syahminan, "Teknologi robot pertanian pengusir hama pemakan biji padi pada desa Kertosari dan deso Bangkalan kecematan Purwosari kabupaten Pasuruan," Jurnal SPIRIT, vol. 11, no. 2, pp. 56-61, 2019.

J. Xu, B. Gu, and G. Tian, "Review of agricultural IoT technology," Artificial Intelligence in Agriculture, 2022.

M. Srbinovska, C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan, "Environmental parameters monitoring in precision agriculture using wireless sensor networks," Journal of cleaner production, vol. 88, pp. 297-307, 2015.

J. L. Hou, R. Hou, D. S. Gao, and H. R. Shu, "The design and implementation of orchard long-distance intelligent irrigation system based on Zigbee and GPRS," 2012, vol. 588: Trans Tech Publ, pp. 1593-1597.

Y. Xia, Z. Sun, K. Du, and X. Hu, "Design and realization of IOT-based diagnosis and management system for wheat production," Transactions of the Chinese Society of Agricultural Engineering, vol. 29, no. 5, pp. 117-124, 2013.

A. Kumar and G. P. Hancke, "A zigbee-based animal health monitoring system," IEEE sensors Journal, vol. 15, no. 1, pp. 610-617, 2014.

S. M. C. Porto, C. Arcidiacono, and G. Cascone, "Developing integrated computer-based information systems for certified plant traceability: Case study of Italian citrus-plant nursery chain," Biosystems Engineering, vol. 109, no. 2, pp. 120-129, 2011.

L. Jiang and K. Sun, "Research on Security Traceability Platform of Agricultural Products Based on Internet of Things," 2017: Atlantis Press, pp. 146-150.

A. Rahayuningtyas, D. Sagita, and N. D. Susanti, "Sistem deteksi dan pemantauan kualitas air pada akuaponik berbasis android," Jurnal Riset Teknologi Industri, vol. 15, no. 1, pp. 75-89, 2021.

N. D. Susanti, D. Sagita, I. F. Apriyanto, C. E. W. Anggara, D. A. Darmajana, and A. Rahayuningtyas, "Design and Implementation of Water Quality Monitoring System (Temperature, pH, TDS) in Aquaculture Using IoT at Low Cost," 2022: Atlantis Press, pp. 7-11.

S. Prabawa, B. Pramudya, I. W. Astika, R. P. A. Setiawan, and E. Rustiadi, "Sistem Informasi Geografis Dalam Pertanian Presisi Aplikasi Pada Kegiatan Pemupukan Di Perkebunan Tebu," 2009.

J. De Baerdemaeker, "Precision agriculture technology and robotics for good agricultural practices," IFAC Proceedings Volumes, vol. 46, no. 4, pp. 1-4, 2013.

M. Li, K. Imou, K. Wakabayashi, and S. Yokoyama, "Review of research on agricultural vehicle autonomous guidance," International Journal of Agricultural and Biological Engineering, vol. 2, no. 3, pp. 1-16, 2009.

N. Noguchi and O. C. Barawid Jr, "Robot farming system using multiple robot tractors in Japan agriculture," IFAC Proceedings Volumes, vol. 44, no. 1, pp. 633-637, 2011.

C. Zhang, L. Yang, and N. Noguchi, "Development of a robot tractor controlled by a human-driven tractor system," Engineering in Agriculture, Environment and Food, vol. 8, no. 1, pp. 7-12, 2015.

S. S. Prayogo, Y. Permadi, and T. M. Kusuma, "Rancang Bangun Agrobot-Ii: Robot Edukasi Penanam Benih Tanaman Padi Dengan Kendali Jarak Jauh," Jurnal Ilmiah Teknologi dan Rekayasa, vol. 25, no. 2, pp. 89-101, 2020.

R. A. Nanda, A. Arhami, and R. Kurniawan, "Perancangan Dan Pengujian Model Mobil Robot Penanam Bibit Kangkung," Rona Teknik Pertanian, vol. 13, no. 2, pp. 14-28, 2020.

A. Arnello and B. Soemardiono, "Paduan Zona Agro Edu Tourism (AET) dan Plant Factory with Artificial Lighting (PFAL) pada Vertical Urban Farming," Jurnal Sains dan Seni ITS, vol. 7, no. 1, pp. 5-9, 2018.

W. Rasapto, "Budidaya Sayuran dengan Vertikultur," Balai Pengkajian Teknologi Pertanian Jawa Tengah, 2006.

S. H. Van Delden et al., "Current status and future challenges in implementing and upscaling vertical farming systems," Nature Food, vol. 2, no. 12, pp. 944-956, 2021.

Published
2022-10-31
How to Cite
[1]
R. Efendi and D. Sagita, “Teknologi pertanian masa depan dan peranannya dalam menunjang ketahanan pangan”, SJME, vol. 1, no. 1, pp. 1-12, Oct. 2022.

Most read articles by the same author(s)